The Data Pump Server in NeuroShell Trader
21. Overview

32. The Data Pump API (Basic Setup)

63. The Data Pump API (Expanded Setup)

94. User IDs and Passwords

115. Tips and Techniques

126. The Data Pump Example

147. Frequently Asked Questions

1. Overview

NeuroShell Trader (NST) includes a feature called the Data Pump Server (DP, or Data Pump) that acts as an intermediary to feed an external data stream into the NST and makes your application or DLL the primary data source. For software developers the DP is available through calls to eight API functions located in the NSTFEED.DLL, distributed with NST.

Below are two diagrams showing how the DP transmits data:

Basic Setup:
[image: image1.png]User's external
application or DLL

NSTFEED.DLL|

Neuroshell Trader

Expanded Setup:

[image: image2.png]User's external
application or DLL

NSTFEED.DLL|

Neuroshell Trader

T "

The DP requires the user to build his/her own external application or DLL, which will act as a data feed server. The user’s application collects data from the desired source(s) and sends the data to the NSTFEED.DLL. On the other end, NST is switched to receive the data through the Data Pump interface. This is done by selecting the name of your server application or DLL from the Tools -> Data Sources -> Server tab (NST scans the Servers directory beneath its location and adds the available EXEs and DLLs to the Server list).

It is possible to transmit not just one, but a number of data streams simultaneously. The user’s application or DLL puts an identification mark on each data stream by assigning it a ticker and category. Tickers, transmitted through the DP, always appear in the data category (in NST) specified by the API call. NST receives data and uses it just as if it were Quote.com, or E-signal, a text file, or any other data source.

NST backs up all data received from the DP and other data sources (Quote.com, eSignal, etc.) on the hard disk. Therefore, NST will try to merge previously downloaded data with current requests to minimize data requested.

The Data Pump can transmit any kind of data: historical end-of-day (such as daily, weekly, monthly), historical intraday (such as 1-min, 2-min, 5-min, etc.), and historical and real-time tick data.
2. The Data Pump API (Basic Setup)
The basic setup described in this chapter explains how to get data into NST using the basic calls that are to be used by your application or DLL to provide data to NST via the NSTFEED.DLL. If you do not use the features in expanded setup, NST will not be able to request or read data until it has been added using your application or DLL.
Below are the basic prototypes of the Data Pump API functions using Microsoft Visual Basic notation:

Public Declare Function NSTSETUPDATA Lib "NSTFEED.DLL" _

(ByVal Ticker As String, ByVal description As String, ByVal BarInt As Single, ByVal NumColumns As Long, ByVal Category As String, ByVal FirstDateAvailable As Double) As Long

Public Declare Function NSTSETLABEL Lib "NSTFEED.DLL" _

(ByVal Ticker As String, ByVal BarInt As Single, ByVal Column As Long, ByVal LabelName As String) As Long

Public Declare Function NSTSETVALUE Lib "NSTFEED.DLL" _

(ByVal Ticker As String, ByVal BarInt As Single, ByVal Column As Long, ByVal Value As Double) As Long

Public Declare Function NSTCOMMITROW Lib "NSTFEED.DLL" _

(ByVal Ticker As String, ByVal BarInt As Single) As Long

Below are prototypes of the basic Data Pump API functions using Microsoft Visual C++ notation:

long __stdcall NSTSETUPDATA(LPSTR Ticker, LPSTR TickerDescription, float BarInterval,
long NumColumns, LPSTR Category, double FirstDateAvailable);

long __stdcall NSTSETLABEL(LPSTR Ticker, float BarInterval, long Col, LPSTR Label);

long __stdcall NSTSETVALUE(LPSTR Ticker, float BarInterval, long Col, double Val);

long __stdcall NSTCOMMITROW(LPSTR Ticker, float BarInterval);

Note: you may need to include the NSTFEED.LIB file in your Object/Library Modules.

Note: The functions all return a value of -1 for success and 0 for failure. All Long values in the prototypes are 4-byte longs, all Single/Float values are single precision 4-byte floating point values, and all Double values are double prediction 8-byte floating point values.
Each data stream must first be initialized by calling the NSTSETUPDATA function. You specify the ticker which will serve as the data stream identifier, the bar interval, the number of columns in the data stream, and the category in which the ticker will appear in NST. Possible bar intervals are listed below:

	Bar Interval
	Data type

	0
	Tick data

	1
	1-minute data

	2
	2-minute data

	5
	5-minute data

	10
	10-minute data

	15
	15-minute data

	20
	20-minute data

	30
	half-hour data

	60
	hourly data

	1440
	daily data

	10080
	weekly data

	302400
	monthly data

The parameter “number of columns” defines how many sub-streams are in the data stream. It depends on the bar interval. The two cases are described below:
1. Tick data (bar interval = 0) is sent in the DateTime/Close/Volume format so there usually would be three columns in such a data stream. However NST assumes that the first three columns are set to these and accumulates data appropriately creating Open, High, Low, Close, and accumulated Volume. Note that Tip 5 later in the documentation describes how bid and ask prices can also be sent using an additional Tick Type 4th column. Tick data does not support additional data beyond the DateTime, Close, Volume and Tick Type described in Tip 5.
2. Bar data (bar interval > 0) can be transmitted in the DateTime/Open/High/ Low/Close/Volume format so there usually would be six columns in such a data stream. You may add additional data if you desire, but if you are not using the expanded setup (explained below) these columns are required to be provided, if you are unable to provide all the data you must substitute appropriate data for the missing data (i.e. you may use zero for the volume if you can’t provide it).
Note that when sending bar data (bar interval > 0), the DP requires that DateTime / Open / High / Low / Close / Volume be fed in both historically and in real time. However, since many data feeds provide historical OHLCV values and only real–time Close/Volume ticks (as opposed to full OHLC bar ticks in realtime), you may find it more convenient to utilize negative bar intervals. Using negative bar intervals is described further below in Tip 2 of section 5 of this document. The negative bar interval technique essentially shifts the burden of computing realtime Open, High and Low bar values based on incoming ticks from your application to the DP.

The second to last parameter is the category name in which your ticker will appear in NST. The following table shows allowed category values and their translation into NST categories. Category names are not case sensitive.

	The NSTSETUPDATA category parameter
	NeuroShell Trader category

	"future", “ata", "cbot", "cec", "cme", "comex", "dtb", "ipe", "kcbt", "lce", "liffe", "mace", "matif", "mge", "nybot", "nyce", "nyfe", "nymex", "simex", "wce"
	"Future"

	“future_c"
	"Future (Continuous)"

	"futreopt", "futre option", "future option"
	"Future Option"

	"stock", "nyse", "nasdaq", "nasdaq100", "amex", "amex elfs", "s&p500", "s&p100", "dow30"
	"Stock"

	"stockopt", "stock option"
	"Stock Option"

	"breadthalizer", "index"
	"Index"

	"crncyopt", "currency option"
	"Currency Option"

	"mutfund", "mutual"
	"Mutual Fund"

	"MonyMrkt", "MktFund", "Money"
	"Money Market Fund"

	"IndexOpt", "Index Option"
	"Index Option"

	"cash", "spot"
	"Cash"

	"Bond"
	"Bond"

	"Spread"
	"Spread"

	"ForgnEx", "Foreign Exchange", "Forex", "finex"
	"Forex"

	"group", "composite", "indGROUP"
	"Industry Group"

	"EXCHrate", "EXCHANGE"
	"Exchange Rate"

	"canstock", "canadian stock"
	"Canadian Stock"

	"Example"
	"Example"

	Any other label
	"Miscellaneous Instrument"

The last parameter of NSTSETUPDATA is the start date for the data you are sending over. This variable is necessary so NST knows not to re-request data unless the first date loaded on the chart is set prior to this date. In general, this first date should be set to the same value as the date requested by NeuroShell.

So for instance, even if the date requested by NeuroShell is 1/1/1900 and your historical data only goes back to 1/1/2000, you should still set this first date to 1/1/1900 so that data requests back prior to 1/1/2000 won’t cause data to be re-requested. Additionally, if the date requested is a Saturday or Sunday but the data doesn’t start until a Monday, the first date should still be set to the Saturday or Sunday as requested by NeuroShell.

Note that if you are filling data based upon your own user interface independent of NeuroShell and your data starts at 9:00 AM on 1/1/2003 you should send 1/1/2003 as the first date provided so that NST is able to fill any chart with data that is requesting data greater than or equal to 1/1/2003.

Example: To initialize a one minute Microsoft data stream with 6 columns in the “Stock” Category with a start date of 1/1/2003:

ret = NSTSETUPDATA(“MSFT”, “Microsoft Corporation”, 1, 6, “Stock”, cvdate(“1/1/2003”))
Next, each column must be assigned a label. This is done by the NSTSETLABEL function call. If all of that data is not available, then you may send either a copy of data (i.e. if only close is available then set the open, high, and low equal to the close) or use a value that NST recognizes as a NULL value, 3.4e38.
Example: To setup the column names for the Microsoft data stream we previously initialized:

ret = NSTSETLABEL(“MSFT”, 1, 1, "Date/Time")

ret = NSTSETLABEL(“MSFT”, 1, 2, "Open")

ret = NSTSETLABEL(“MSFT”, 1, 3, "High")

ret = NSTSETLABEL(“MSFT”, 1, 4, "Low")

ret = NSTSETLABEL(“MSFT”, 1, 5, "Close")

ret = NSTSETLABEL(“MSFT”, 1, 6, "Volume")

Column numbering is 1-based, i.e., the very first column has number 1. Therefore, you must make the Date/Time column #1.

The data in each column is set by the NSTSETVALUE function. This function works with one column and one bar at a time. So, for each bar this function is called “number of columns” times to fill data in each column. After the data is set in each column, the bar should be “committed” by calling the NSTCOMMITROW function. Only after this call will the Trader recognize the bar and display it on the chart. This same procedure is to be used for historical data as well as incoming real time data. If new data comes in for a previously recorded Date/Time, it will overwrite the previously sent value. If you are using Tick Data (i.e. BarInterval = 0), all ticks will be accumulated appropriately, even if the Date/Time is repeated.
For daily/weekly/monthly data you should use the Eastern time zone date/time that the market closes (i.e. for an NYSE stock you would use the proper date plus 4:00 pm). This way NeuroShell Trader will know when the bar is to expire. NeuroShell Trader will automatically drop the 4:00 pm once the bar has completed.

Example: To set one row of data (continuing our Microsoft Examples):
ret = NSTSETVALUE(“MSFT”, 1, 1, DateTimeVariable)

ret = NSTSETVALUE(“MSFT”, 1, 2, OpenVariable)

ret = NSTSETVALUE(“MSFT”, 1, 3, HighVariable)

ret = NSTSETVALUE(“MSFT”, 1, 4, LowVariable)

ret = NSTSETVALUE(“MSFT”, 1, 5, CloseVariable)

ret = NSTSETVALUE(“MSFT”, 1, 6, VolumeVariable)

ret = NSTCOMMITROW(“MSFT”, 1)
3. The Data Pump API (Expanded Setup)

The expanded setup described in this chapter explains how to use LST files and a few additional API calls to enable NST to request data from your application or DLL via the NSTFEED.DLL.
In order to use the NSTFEED.DLL you must first provide NST with a list of available tickers. This can be easily done by using LST files. Any symbol included in a LST file will assume that you will be providing Date/Time, Open, High, Low, Close, and Volume, unless column information is provided. The LST file is a text file (i.e. Stocks.LST) with no header line or blank lines at the beginning of the file. Each line of the file must be of the form Ticker Symbol, Description (i.e. “MSFT, Microsoft”). If no description is entered, the ticker symbol will be used as the description. In order to provide column names to NST you must add an additional column that is enclosed by “{“ and “}”, which contains a list of columns separated by either a comma or the symbol “|” (i.e. in order to provide only the Date/Time and close for Microsoft the format would be “MSFT, Microsoft, {Date/Time|Close}”). If no column names are provided NST defaults the column names to Date/Time, Open, High, Low, Close, Volume.
If you provide LST files in a directory beneath the Servers directory of the same name as your application or DLL (i.e., if your application is named XYZ.exe, then you should create a directory beneath the Servers directory named XYZ that will include your LST files). NST will read the LST files and will display those symbols on a list inside NST.

Below is a list of prototypes that you may or may not need to use depending on your application or DLL:

Here are the expanded prototypes of the Data Pump API functions using Microsoft Visual Basic notation:

Public Declare Sub SetDataFeedhwnd Lib "NSTFEED.DLL" _

(ByVal hWnd As Long)

Public Declare Sub UpdatePercent Lib "NSTFEED.DLL" _

(ByVal Percent As Long)

Here are the expanded prototypes of the Data Pump API functions using Microsoft Visual C++ notation:

Void __stdcall SetDataFeedhwnd (long hWnd);

void __stdcall UpdatePercent(long Percent);

Note: you may need to include the NSTFEED.LIB file in your Object/Library Modules.

Writing an application (EXE)

If you are writing an application, you must provide NST with a “text box handle” (this has only been done using VB, but it will most likely work using other environments as well) in order to receive requested symbols (provided by your LST files). In order to do this when your application starts you will need to call SetDataFeedhwnd with the text box’s window handle. This will allow you to receive “events” from NST.

Example: To set the text box’s window handle:

SetDataFeedhwnd Text1.hWnd
Additionally, when your application ends you will need to call SetDataFeedhwnd again with a value of zero. This will tell NST that your application is no longer available to receive “events”.
Example: To reset the text box’s window handle:

SetDataFeedhwnd 0
After you have enabled NST to “send” you “events”, you will now need to code the event handling routine. This is to be done in the text box change event. NST will “send” you text messages telling you exactly what NST is requesting. How you handle them is really up to you. Possible events are explained in the table below:

	Event
	Meaning

	"*****UnloadEXE*****"
	NST is either closing or has changed servers to a different server than your application. In either case NST no longer requires your application to be running. It is particularly important to end your application (EXE) if you have no interface for the user to see.

	"*****UserIDPassword*****"
	If a UserID or Password (in NST) has changed this event will inform you when this happens (more information on this is described in the next section).

	"*****RemoveTicker*****" + “!@#” + Ticker + “!@#” + BarInterval
	NST no longer requires this data (usually because a chart has been closed), it is desirable to remove this from the list of tickers being monitored to maximize the user bandwidth (both processor and communication).

	Ticker + "!@#" + description + "!@#" + Category + "!@#" + BarInterval + "!@#" + StartDate + “!@#” + Columns
	NST is requesting data from your server. The data can be sent back to NST using the methods described in Section 2.

There is an example of how this is done in “Data Pump EXE Example.frm” in the Text1_Change event.
When NST calls sends an “event” requesting data you should:

1. Download the appropriate historical data and send it to NST using the methods described in Section 2.

2. Update the Percentage downloaded using the UpdatePercent API.

3. As realtime data arrives, send it to NST using the methods described in Section 2.

Requirement 2 above informs NST of the percentage of the file(s) downloaded when reading historical data. In order to do this, use the UpdatePercent procedure prototyped above. If you use the value 100 prematurely NST will think you are done and miss bars that have not yet been inserted into NST.

Example: To inform NST that you have completed downloading (and stored to NST via APIs in Section 2):

UpdatePercent 100

Currently the only effect this has in NST is to let it know that you are finished downloading the data (i.e., UpdatePercent 100); however we are hopeful that in the next version we will be able to update a percentage bar with this information as you are downloading it (i.e. UpdatePercent 25, UpdatePercent 50, UpdatePercent 75, etc.).

Writing a DLL
If you are writing a DLL, you must provide NST with two specific functions to call in order to receive requested symbols (provided by your LST files) and notifications that symbols are no longer required. (This has only been done using Visual C++, but will most likely work using other environments as well.) The functions that you need to use in your code are prototyped below:
_declspec (dllexport) long RequestTicker(char *ticker, char *description, char *category, double startdate, float BarInterval, char *ColumnNames)
_declspec (dllexport) long RemoveTicker(char *ticker, float BarInterval)
There are examples of how these functions are to be used in “Data Pump DLL Example.c”.

Once you have written your DLL, NST will find the procedures in the DLL and call them appropriately when required.

When NST calls RequestTicker (in your code) you should:

4. Download the appropriate historical data and send it to NST using the methods described in Section 2.

5. Update the Percentage downloaded using the UpdatePercent API.

6. As realtime data arrives, send it to NST using the methods described in Section 2.

Requirement 2 above informs NST of the percentage of the file(s) downloaded when reading historical data. In order to do this, use the UpdatePercent procedure prototyped above. If you use the value 100 prematurely NST will think you are done and miss bars that have not yet been inserted into NST.

Example: To inform NST that you have completed downloading (and storing to NST via APIs in Section 2):

UpdatePercent 100

The percentage that you use here will show on a percentage bar inside of NST (i.e. UpdatePercent 25, UpdatePercent 50, UpdatePercent 75, etc.). To inform the user and keep the user happy that “something” is happening.
The procedure RemoveTicker will be called when NST no longer has any charts using that data, so that you can remove it and increase the bandwidth for the processor and communication channels.

4. User IDs and Passwords

This chapter explains how to notify NST that a UserID/Password is required and explain how to get the UserID/Password when desired.

Below are the UserID/Password prototypes of the Data Pump API functions using Microsoft Visual Basic notation:

Public Declare Sub RequireUserIDPassword Lib "NSTFEED.DLL" ()

Public Declare Sub GetUserIDPassword Lib "NSTFEED.DLL" _

(ByRef UserID As String, ByRef Password As String)

Below are the UserID/Password prototypes of the Data Pump API functions using Microsoft Visual C++ notation:

void __stdcall RequireUserIDPassword();

void __stdcall GetUserIDPassword(char **UserID, char **Password);

Note: you may need to include the NSTFEED.LIB file in your Object/Library Modules.

In order to inform NST that a UserID/Password is required call RequireUserIDPassword when your application or DLL starts (examples of these can be found in the sample code).

Example: To inform NST that you require a UserID and Password:

RequireUserIDPassword
Once you have notified NST that a UserID and Password are required, NST will enable the user to enter the UserID and password via the Setup button next to the Sever Selection Combo box on the Servers Tab.

Writing an application (EXE)
If you are writing an application, you will receive events that the UserID and/or Password have changed via the events described in Section 3.

In order to retrieve the UserID and Password all you do is call GetUserIDPassword using the prototype described above.

Example: To retrieve the UserID and Password:

GetUserIDPassword UserID, Password
You can use this information to log on appropriately as your DLL or application requires.

Writing a DLL

If you are writing a DLL, you should provide NST with a specific function to call in order to receive a notification when the UserID and/or Password have changed. (This has only been done using Visual C++, but will most likely work using other environments as well.) The function that you need to use in your code are prototyped below:
_declspec (dllexport) long UserIDPasswordChanged(char *UserID, char *Password)
The procedure UserIDPasswordChanged will be called whenever NST sets the password, so that you know when it has been changed in NST. This will only be called if you have called the RequireUserIDPassword function and you have provided it in your DLL.

Alternatively, you can get the UserID/Password when a symbol is being requested by using the GetUserIDPassword function described above (in Writing an application). However you will not receive an event that the UserID/Password has changed.

5. Tips and Techniques

Tip 1.

Probably the trickiest part when calling the NSTSETDATA function is how to transmit Date/Time values. The Date/Time parameter must be in Microsoft’s Julian Date/Time format for NST to understand it. The integer part of this double-precision number is the number of days elapsed since January 1, 1900. The fractional part is time within one day. One hour is 1/24=0.0416666, one minute is 1/(24*60)=1/1440=6.94444E-4, one second is 1/(24*60*60)=1.1574074E-5. In Microsoft Visual Basic you can use the CDbl function to convert date/time format into the double-precision format.

Example: February 5, 2003 9:19:36 AM is 37657.3886111111 in MS Julian Day format.

Tip 2.

There is a way to combine both historical OHLCV values and real–time Close/Volume ticks in a single data stream. For this, you would use the negative of the requested bar interval and the DateTime/Close/Volume column format.

Each historical OHLC bar is created by sending 4 separate bars in that format, each with the same date and time. Since the OHLC prices are transmitted through the single Close column. In order to let the DP know that you are really passing OHLC prices through the single channel, you put Open, High, and Low prices into the Close column with zero volume value, and real Close with non-zero (real) volume value. In other words, only the Close has a volume. When the DP sees that, it knows to combine all 4 values into one bar. In a way, you are essentially feeding in an Open tick, High tick, Low tick and Closing tick which the DP combines into a single OHLC bar.
So for instance, if the DP requests 5 minute bars (bar interval = 5), but you wish to send OHLC historical and real time ticks, you would setup Date, Close and Volume columns using a negative bar interval of -5:
Example: To setup the data and column names for a Microsoft data stream:

ret = NSTSETUPDATA(“MSFT”, “Microsoft Corp”, -5, 3, “Stock”, cvdate(“1/1/2003”))
ret = NSTSETLABEL(“MSFT”, -5, 1, "Date/Time")

ret = NSTSETLABEL(“MSFT”, -5, 2, "Close")

ret = NSTSETLABEL(“MSFT”, -5, 3, "Volume")

You would then feed in historical data using an Open tick with no volume, a High tick with no volume, a Low tick with no volume and finally the closing tick with the bars volume using a negative bar interval of -5. Note that each of these pseudo ticks should have the exact same date/time corresponding to the bars date/time.

Example: To set one row of data (continuing our Microsoft Examples):
 ret = NSTSETVALUE(“MSFT”, -5, 1, BarDateTime)

 ret = NSTSETVALUE(“MSFT”, -5, 2, BarOpenVal)

 ret = NSTSETVALUE(“MSFT”, -5, 3, 0)

 ret = NSTCOMMITROW(“MSFT”, -5)

 ret = NSTSETVALUE(“MSFT”, -5, 1, BarDateTime)

 ret = NSTSETVALUE(“MSFT”, -5, 2, BarHighVal)

 ret = NSTSETVALUE(“MSFT”, -5, 3, 0)

 ret = NSTCOMMITROW(“MSFT”, -5)

 ret = NSTSETVALUE(“MSFT”, -5, 1, BarDateTime)

 ret = NSTSETVALUE(“MSFT”, -5, 2, BarLowVal)

 ret = NSTSETVALUE(“MSFT”, -5, 3, 0)

 ret = NSTCOMMITROW(“MSFT”, -5)

 ret = NSTSETVALUE(“MSFT”, -5, 1, BarDateTime)
 ret = NSTSETVALUE(“MSFT”, -5, 2, BarCloseVal)

 ret = NSTSETVALUE(“MSFT”, -5, 3, BarVolVal)

 ret = NSTCOMMITROW(“MSFT”, -5)

As each new tick arrives in realtime you would feed the price and volume using the negative bar interval of -5 as well. However, for the case of incoming ticks, you would use the actual date/time of the incoming tick value as opposed to the actual 5-minute bars ending date/time. In this way, the DP will collect the incoming ticks and decide when the 5-minute bar actually expires.
Example: To set one incoming tick (continuing our Microsoft Examples):
 ret = NSTSETVALUE(“MSFT”, -5, 1, TickDateTime)

 ret = NSTSETVALUE(“MSFT”, -5, 2, TickPriceVal)

 ret = NSTSETVALUE(“MSFT”, -5, 3, TickVolVal)

 ret = NSTCOMMITROW(“MSFT”, -5)

Tip 3.

NeuroShell will automatically combine lesser frequency minute bars to create larger frequency minute bars. So for instance, if a user requests 5 minute bars, you don’t necessarily have to provide 5 minute data. If you provide 1 minute data to the DP, NeuroShell will automatically create 5 minute bars using the 1 minute data. In fact, if a user creates a 1-minute chart and then later creates a 5-minute data chart, NeuroShell will only ask for the 1-minute data initially and will then use the 1-minute data to create the 5-minute chart.

Tip 4.

In NeuroShell Trader, second, tick, volume and range bar charts are currently created from raw tick by tick data. So when a user creates a second, tick, volume or range bar chart in NeuroShell, the DataPump will request a Bar Interval of 0 (tick data).

Once a request for tick data (Bar Interval=0) has been made by NeuroShell, you should feed tick data in the form of Date/Price/Volume to the DP. In this scenario, each tick represents a trade and no bid/ask statistics are calculated. The following code shows how a single tick is sent:

 NSTSETVALUE ticker, 0, 1, DateTime
 NSTSETVALUE ticker, 0, 2, TickPrice
 NSTSETVALUE ticker, 0, 3, TickVol
 NSTCOMMITROW ticker, 0
Tip 5.

Second, tick, volume and range bar charts in NeuroShell Trader have the capability to display bid, ask, bid volume, ask volume, number of trades at bid and number of trades at ask. In order for these bid and ask data streams to be calculated, you must feed both trade ticks as well as best bid and best ask ticks to the DP. You do this by sending tick data in the form of Date/Price/Volume/TickType. In this scenario, each trade tick is sent with a TickType=0. However, bid/ask updates can also be sent using a TickType=2 (BestBid) or a TickType=4 (BestAsk). When BestBid and BestAsk ticks are sent, the bid/ask statistics like Number of Trades at Bid, Number of Trades at Ask are calculated for second, tick, volume and range bars. The following code shows how a single tick is sent using tick type to identify the type of tick:

 NSTSETVALUE ticker, 0, 1, DateTime
 NSTSETVALUE ticker, 0, 2, TickPrice
 NSTSETVALUE ticker, 0, 3, TickVol
 NSTSETVALUE ticker, 0, 4, TickType
 NSTCOMMITROW ticker, 0
Tip 6.
Debuging your application or DLL may be a little tricky depending on how you use the DP interface.

In order to debug your application:

1. Create your application’s EXE and place it in the Servers Directory below NST.

2. Start NST and select your server.

3. After your server is loaded by NST (generally after the first data request), Hit CTRL-ALT-DEL, select your server and end the process.

4. Start your application from your design environment (i.e. VB).

5. If you require a UserID/Password – in NST select the Setup button in the Server dialog (Tools – Data Sources – Servers tab), and change the UserID and/or Password. Then Select OK twice – this will set your UserID/Password in the VB environment
In order to debug your DLL merely set the “Executable for Debug Session” to NSTRADER.EXE and start your debugging session in your design environment (i.e. VC++).

6. The Data Pump Example

Data Pump EXE Example

The Data Pump EXE Example is written with Microsoft Visual Basic 6.0. Depending on the constants that are set inside the example it can receive request, have an interface, add/remove tickers via the interface, use only tick data as an example, require a UserID and Password, and end when NST ends or changes servers.
In order to test the Data Pump EXE Example – place the Data Pump EXE Example.EXE in the Servers directory and the LST files provided in a “Data Pump EXE Example” directory beneath the Servers directory, run the NeuroShell Trader 4.0. Click on Tools -> Data sources. Select the Server tab. From the list of servers select “Data Pump EXE Example”. Select the markets that you wish to use. There are no other settings to change or tweak. Using the EXE in its current state will require a UserID and Password, when you select OK, NST will load the Data Pump EXE Example and hit the RequireUserIDPassword statement in the Form_Load (of the Data Pump EXE Example). This will trigger NST to require a UserID and Password, which will pop up a UserID and Password dialog. After selecting a UserID and Password (it doesn’t get verified as the data is just random), select OK.
In NST, create a new 1-minute chart with no templates. Select from the list of financial instruments provided in the LST files. Select one or more of the listed tickers. Finish creating the chart. You should get a sloped straight line of 100 bars with slightly different open, high, low, and close prices in each of them. Additionally, you will receive random bars that are coming in as “real-time” bars.
The chart should display a live red bar reflecting incoming price ticks. At this point it will look pretty much as if you were connected to a real real-time data feed like Quote.com or E-signal.
To investigate the example thoroughly, load the code up Visual Basic and have a look.

Data Pump DLL Example

The Data Pump DLL Example is written with Microsoft Visual C++. The example is clearly not complete, but it is meant to give you an idea of how the interface can work. The DLL is currently setup to receive requests, but not provide “real-time” data as the EXE example does. It does however provide example code of how you might do it.
In order to test the Data Pump DLL Example – place the Data Pump DLL Example.DLL in the Servers directory and the LST files provided in a “Data Pump DLL Example” directory beneath the Servers directory, and run the NeuroShell Trader 4.0. Click on Tools -> Data sources. Select the Server tab. From the list of servers select “Data Pump DLL Example”. Select the markets that you wish to use and there are no other settings to change or tweak. Using the DLL in its current state will require a UserID and Password, when you select OK, NST will load the Data Pump DLL Example and hit the RequireUserIDPassword statement in the DLLMain. This will trigger NST to require a UserID and Password, which will pop up a UserID and Password dialog. After selecting a UserID and Password (it doesn’t get verified as the data is just random) select OK.

In NST, create a new 1-minute chart with no templates. Select from the list of financial instruments provided in the LST files. Select one or more of the listed tickers. Finish creating the chart. You should get a sloped straight line of 100 bars with slightly different open, high, low, and close prices in each of them. There will be no real time bars coming in, as that has not been programmed.
To investigate the example thoroughly, load the code up Visual C++ and have a look.

7. Frequently Asked Questions

Is it preferable to program an application (EXE) or a DLL?

There are several subtle differences between programming an EXE and a DLL:

1. The EXE uses windows messaging to communicate from NST to the EXE, whereas the DLL uses direct calls to the procedures.
2. A DLL is “in process”, which means that it has direct calls to and from NST, as opposed to sharing a memory space between processes. This provides DLLs with a speed advantage.

3. Because the DLL uses the same program space as NST, it is able to update a percentage bar within NST.

4. When NST is closed the DLL is guaranteed to be released because the DLL requires an application to “own” it. Where as an EXE can “own” itself.

5. Different data providers provide different possible programming interfaces. It may not be possible to use a DLL or an EXE depending on the interface.
How do I use different fields than Open, High, Low, Close, and Volume?
If you are not using the provided expanded setup capability, then you simply use the NSTSetLabel API call to set the name of the column and send the associated data as you would any other data. However, you are required to use the fields required as explained in the Basic Setup above.
If you are using the expanded capability, you may add the columns desired to the LST file that you provide as explained in the Expanded Setup above.
Do I have to save the data that has been downloaded?
No, NST saves the data that has been downloaded and tries to merge it so that if you have previously downloaded data if you have data back far enough for your request, it will only request data back to the most recent data that was saved.
Is there an API or user interface somewhere that will allow me to delete rows of data? (I have had some problems with bad data from my data supplier being stored in the data file with no apparent way of deleting it).
No, there is no way to delete bad data. However, there is a way to modify the data once it’s in NST using Modify Data. You may want to put a filter on your data before sending it to NST.
Some of my 1 minute files are getting large, and charts are taking longer and longer to load. Is there some way of deleting the oldest data in the data files?
There is currently no way to delete older data; however, the problem is most likely not that the data is there, but rather that you need to move your chart’s first date loaded forward.
If for some reason (network error, etc.) I am not able to satisfy a request from NST what should my code do?
You should call UpdatePercent(100). NST will wait for you to call UpdatePercent(100), until that happens NST will not be able to continue on. If you haven’t setup the data then NST will assume there is no data.
How will the missing data be loaded when the error condition is rectified?
In order “reload” the data you will need to close all charts that use that data, then reload the chart. This is true regardless of data feed (quote.com, eSignal, etc. are all handled the same way).
How does the data pump inform NS that a requested data compression is not available? For example, my data pump might not be able to supply 5 min bars, but can supply 1 min bars. How do I reject the 5min request so NS knows to build the bars from the 1min data?
If you supply the data pump with 1 minute bars then the data pump will automatically combine all those bars into 5 minute bars. If NST wants more data than is available in the current or previously loaded 1 minute bar request it may request 5 minute bars from your application. In this case you just need to supply the 1 minute bars and let NST handle it (or if you’ve previously provided them just call UpdatePercent(100)).
